Class: B.ScIII Semester-V Subject: Physics Paper -I : PH-501 Quantum and Laser Physics	
Subject S.No.	: Physics Paper -I : PH-501 Quantum and Laser Physics Course Outcomes
Co1	Origin quantum physics (Experimental basis)
	Differentiate between classical and quantum Physics.
	Describe Photoelectric effect, Broglie hypothesis, Davisson and Germer experiment, Phase velocity, group velocity and their relation, Heisenberg's uncertainty principle.
	Derive 1-D time-dependent Schrodinger wave equation, Time-independent
	Schrodinger wave equation, Eigen values, Eigen functions, wave functions and its
	Significance.
Co2	Application of Schrodinger Wave Equation:
	To solve problems like one-dimensional box, One dimensional step potential, One
	dimensional potential barrier, harmonic oscillator using Schrodinger wave equation .
Co3	Laser Physics -I
	Understand the LASER and its characteristics, Einstein's coefficients and possibility of
	amplification, momentum transfer, necessary condition for light amplification, laser
Co4	pumping and Threshold condition for laser emission. Laser Physics – II
	Describe different type of Laser such as He-Ne laser and RUBY laser, Semiconductor
	laser (Principle, Construction and working), Applications of lasers in the field of
	medicine and Industry.
	Paper -II : PH-502 Nuclear Physics
Co1	Nuclear structure and properties of nuclei:
	Students understand the basic nuclear properties. Determination of size of nuclei by
	Rutherford back scattering Experiment.
Co2	Nuclear Radiation decay processes:
	Students learnt about the theory of disintegration, interaction of heavy charged and
Co2	light charged particles with matter.
Co3	Nuclear Accelerators Linear and Tendam accelerator, Cyclotron, Betatron are studied in detail. Also learnt
	about nuclear detectors.
Co4	Nuclear Reactions and Nuclear Reactors
	Nuclear fission and nuclear fusion are studied in details. Also use these reactions in
	study of Nuclear Reactors

Class: B.Sc. 3 rd Semester : Sixth	
Subject :	Physics Paper:1,:PH-601 Solid State and Nano Physics
Sr. No.	Outcomes
Co1	Crystal structure I Concepts of periodicity, unit cell, primitive cell, crystal plan and miller indices is studied.
Co2	Crystal Structure II Students learn about phenomena of X-Ray Diffraction, Reciprocal lattice and its physical significance.
Co3	Superconductivity The introduction and classification of superconductors ,practical applications of superconductivity are studied.
Co4	Introduction to Nano Physics Vision and objective of Nano technology and applications of Nano technology in different field is studied
	Paper: 2, PH-602, Atomic and molecular spectroscopy
Co1	Historical Background of Atomic Spectroscopy The historical Background of atomic spectroscopy and Bohr atomic Model was studied. Derive Wilson Somerfield Quantization Rule & its relativistic Correction.
Co2	Vector Atomic Model(Single valance electron) Students learnt about Larmor's precession & Theorem. The spin orbit interaction for penetrating & non- penetrating orbits, Comparison of Alkali spectra & Hydrogen spectra.
Co3	Vector Atomic Model (Two valance electron) The spectra of Alkaline- earth elements was studied. The interaction energy of L-S coupling & J-J coupling was calculated.
Co4	Atom in external field & molecular physics Students learnt about Zeeman effect & Stark effect. The electronic, Rotational & Vibrational Spectra were studied.